On Fitness Distributions and Expected Fitness Gain of Mutation Rates in Parallel Evolutionary Algorithms
نویسندگان
چکیده
Setting the mutation rate for an evolutionary algorithm (EA) is confounded by many issues. Here we investigate mutation rates mainly in the context of large-population-parallelism. We justify the notion that high rates achieve better results, using underlying theory which notices that parallelization favourably alters the fitness distribution of a mutation operator. We derive an expression which sets out how this is changed in terms of the level of parallelization, and derive further expressions that allow us to adapt the mutation rate in a principled way by exploiting online-sampled landscape information. The adaptation technique (called RAGE Rate Adaptation with Gain Expectation) shows promising preliminary results. Our motivation is the field of Directed Evolution (DE), which uses large-scale parallel EAs for limited numbers of generations to evolve novel proteins. RAGE is highly suitable for DE, and is applicable to large-scale parallel EAs in general.
منابع مشابه
خوشهبندی خودکار دادهها با بهرهگیری از الگوریتم رقابت استعماری بهبودیافته
Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...
متن کاملFitness distributions in evolutionary computation: motivation and examples in the continuous domain.
Evolutionary algorithms are, fundamentally, stochastic search procedures. Each next population is a probabilistic function of the current population. Various controls are available to adjust the probability mass function that is used to sample the space of candidate solutions at each generation. For example, the step size of a single-parent variation operator can be adjusted with a correspondin...
متن کاملGenetic Resilience and Variable Mutation Rates
It has been shown that evolutionary computation methods are influenced not only by the fitness function explicitly defined by the user but also by the genetic resilience inherent in the evolutionary mechanisms. Given an environment with specialized ecological niches that allow for high fitness and niches that are less specialized but have a lower maximum fitness, Jones and Soule (2006) investig...
متن کاملPMU Placement Methods in Power Systems based on Evolutionary Algorithms and GPS Receiver
In this paper, optimal placement of Phasor Measurement Unit (PMU) using Global Positioning System (GPS) is discussed. Ant Colony Optimization (ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modifi...
متن کاملCase Studies in Applying Fitness Distributions in Evolutionary Algorithms. II. Comparing the Improvements from Crossover and Gaussian Mutation on Simple Neural Networks
Previous efforts in applying fitness distributions of Gaussian mutation for optimizing simple neural networks in the XOR problem are extended by conducting a similar analysis for three types of crossover operators. Onepoint, two-point, and uniform crossover are applied to the best-evolved neural networks at each generation in an evolutionary trial. The maximum expected improvement under Gaussia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002